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D E V E L O P M E N T  O F  F L U I D  M E C H A N I C S  AT T H E  L A V R E N T ' E V  I N S T I T U T E  

OF T H E  S I B E R I A N  D I V I S I O N  O F  T H E  R U S S I A N  A C A D E M Y  O F  S C I E N C E S  IN  1986-1996 

B. A. Lugovtsov and L. V. Ovsyannikov UDC 532 

The studies in fluid mechanics performed over the last decade at the Lavrent'ev Institute of 
Hydrodynamics of the Russian Academy of Sciences were to a large degree extensions of the lines of research 
that were the choice of Academician M. A. Lavrent'ev, the founder of the Siberian Division. The results of the 
studies performed up to 1987 are presented in [1]. In this paper, we give a brief review of the advancements in 
the field of hydromechanics at a new stage where, along with the traditional topics that  date back to M. A. 
Lavrent'ev, new promising lines of research have evolved and been investigated. In addition, some results of 
research at some other Institutes of the Siberian Division of the Russian Academy of Sciences whose lines of 
investigation are intimately adjacent to those of the Lavrent'ev Institute of Hydrodynamics are also touched 
upon in this review. 

G r o u p  Ana lys i s  of  t h e  E q u a t i o n s  of  F l u i d  D y n a m i c s .  (1) This line of investigation, as applied 
to the construction of exact solutions of the equations of motion for gases and fluids, was developed in the 
course of realization of the SUBMODELS program, which was first presented in [2]. This program is based 
on the fact that  many "large" mathematical models that  describe physical processes in the form of a system 
of differential equations E have high symmetry, namely, they admit a fairly wide continuous group G of 
transformations for the subspace of independent and dependent variables. 

The object of the SUBMODELS program is to reach the limit of the possibilities involved in such 
symmetry to find the class of exact solutions of the system E. Although, in the world literature, there are 
many examples of using symmetry properties for this purpose, the problem of reaching the limit of these 
properties was first posed in the SUBMODELS program. 

The idea of the program is based on the fa~ct that  any subgroup H C G is a source of exact partial 
solutions. The search for these solutions reduces to a submodel - -  the factor system E / H .  The latter is 
simplified compared with E, for example, by reducing the dimension for independent variables. Therefore, if 
the system E admits the known basic (widest) group G, all possible subgroups of the group G will act as H. 
Thus, the solution of the purely algebraic problem of compiling the list of all subgroups of the given group G 
plays an important role in the SUBMODELS program. Actually, it suffices to list the subgroups H C G up 
to the similarity in G, which is accomplished by the internal automorphisms of the group G. The complete 
list of unlike subgroups H C G is called the optimal system of subgroups and denoted by OG. 

The passage to the equations of the submodel E / H  consists in establishing additional relations among 
the invariants of the group H that allows one to determine the desired functions and analyze the compatibility 
of these relations with the equations E. 

A detailed description of the SUBMODELS program and the main algorithms of its realization are 
given in [3]. By virtue of the well-known correspondence between the Lie groups and algebras, the Lie algebras 
of operators L are used in the cMculations, and group transformations are reconstructed, if necessary, by 
integration of definite systems of ordinary differential equations. In this case, the purely algebraic part of the 
analysis consists in constructing the optimal system of subalgebras e L  using the algorithm described in [4]. 

The results of the initial stage of realization of the SUBMODELS program for the equations of gas 
dynamics (EGD) are presented in [3]. They include the group classification of the EGD by the equation of 
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state for a gas p = F(p, S), where p is the pressure, p is the density, and S is the entropy, and the complete 
list of 13 unlike invariant submodels with three independent variables for the function F of the general form. 
In this case, the EGD admit the ll-parameter Lie group Gll (or the corresponding Lie subalgebra L11). The 
group Gll is an isomorphic normal extension of the classical Galilean group R4(t, x, y, z) of transformations 
of space and time due to homothety, i.e., the uniform extension of space R 4. The calculated optimal system 
of subalgebras OLll,  which consists of 220 representatives, is given in the form of a table in [3]. 

Each of these representatives induces, generally speaking, several different submodels of the EGD. For 
their classification, Ovsyannikov [5] introduces the notion of the type (cr, 6) of submodel, where the rank a 
is equal to the number of invariant independent variables in the equations of the submodel, and the defect 
6 is the number of "superfluous," noninvariant desired functions. For the EGD, this number can take values 
0 ~< a ~< 3 and 0 <~ ~ ~< 4. Submodels of type (~r, 0) are called invariant, and those of type (a, ~) for 6 > 0 are 
called partially invariant. The latter, in turn, are subdivided into regular (where the invariant independent 
variables do not contain desired functions) and irregular (where desired functions are contained among the 
independent variables in the equations of the submodel). The complete list of possible types of submodels for 
the EGD (for F of the general form) is given in [6]. 

It should be noted that, in contrast to invariant submodels, partially invariant submodels form 
overdetermined systems of differential equations E/H,  and the question of the existence of their solutions is 
not trivial. Ovsyannikov proved [7] that there are solutions for all regular submodels of type (2,1) and gave 
their correct description. 

The realization of the SUBMODELS program for the EGD with an arbitrary F has been mainly 
accomplished to date. A more detailed analysis of the physical content of a number of specific submodels is 
given in [8-15]. J 

For specific equations of state for a gas, the number of resulting submodels of the EGD increases by an 
order of magnitude. For example, in the case of a polytropic gas with F = g(S)p "r (3' = const), the admissible 
Lie algebra is extended to L13, and the optimal system of subalgebras OL13 calculated to date consists of 
1342 representatives [16]. For adiabatic exponent 3' = 5/3, the admissible Lie algebra is extended to L14, and 
OL14 has more than 2000 representatives [17]. 

(2) The monograph of Andreev et al. [18] deals with problems of group analysis and construction 
of exact solutions of the EGD (for an incompressible fluid) in Lagrangian coordinates. The transformation 
from Eulerian to Lagrangian coordinates is a nonlocal transformation, and, therefore, the admissible Lie 
group in Lagrangian coordinates was calculated independently. A physical interpretation of a number of new 
symmetries is given. 

Wide classes of exact solutions of the Euler equations are given, which describe, as a rule, unsteady 
vortex motion. Representations for the solutions in Lagrangian coordinates include arbitrary functions of time 
and space coordinates. This makes it possible to study various initial boundary-value problems. It has been 
shown that Gerstner's trochoidal waves on the surface of an infinitely deep fluid are described by an invariant 
solution. A group explanation for the experiments of J. I. Taylor on rotating fluids is given. 

(3) Shugrin [19-22] constructed the equations of two-velocity gas dynamics using the general principles 
of thermodynamics, the Galilean invariance, the laws of conservation of mass, energy, and momentum, and 
some special structural hypotheses. Central to the construction are the tensor classification of the state 
parameters of the system, the corresponding tensor classification of basis equations [19, 20], and the assumption 
of two-velocity thermodynamics [21]. 

The equations are constructed in two steps. The equations of "ideal two-velocity hydrodynamics," 
which contain only the first derivatives [21], are constructed in the first step. In the second step, based on 
the general Onsager principle, these equations are supplemented by "diffusion or dissipative" components 
containing second derivatives [22]. The approach developed in these papers provides a rational basis for the 
construction of equations for complex multicomponent systems, thus allowing one to obtain a consistent 
description. 

Flows wi th  Free Boundar i e s .  Surface and  In t e rna l  Waves.  (1) A number of new theorems 
on the existence and uniqueness of solutions to the corresponding boundary-value problems in the classical 

494 



exact formulation was proved in this line of investigation. A theory of the Conley topological index was 
constructed for smooth functionals defined on completely dense, open subspaces of the Hilbert space, whose 
linear operators generated by the second variation have regions of continuous spectrum [23]. These results 
were used to prove the nonuniqueness of the solution of the classical problem of a potential solitary wave on 
the surface of an ideal incompressible fluid. 

A topological theory of disturbances for nearly symmetrical functionals was developed, and a method 
for obtaining the lower bound for the eigenvalues of nonlinear variational operators was proposed which is 
based on a combination of estimates of the index of the critical point from the Morse theory and estimates 
of the dimension of the negative natural subspace for the operator generated by the second variation of the 
functional at this point. The results obtained were used to prove the existence of periodic solutions of the 
nonlinear hyperbolic equation [24]. 

The initial boundary-value problem for the system of equations describing the dynamics of plane 
vortex surface waves in an eddy fluid of infinite depth has been studied [25]. It was proved that  the problem 
is uniquely solvable locally in t ime for functions of finite smoothness. It has been shown that the correctness 
condition of this problem coincides (formally) with the correctness condition of the problem of eddy-free flows: 
the pressure gradient on the free surface should be directed inward in the fluid. 

The problem of two-dimensional potential flow of a heavy incompressible ideal eddy-free fluid from 
beneath a flat horizontal shield has been solved in an exact formulation. The bot tom is considered even and 
horizontal. The corresponding boundary-value problem contains the parameter ~ = ghoU -2 (the square of 
the inverse Froude number), which distinguishes the supercritical (X < 1) and subcritical (X > 1.) flows. It 
was proved that,  for ~ = 1 - 6 and a sufficiently small 5 > 0, there is a nontrivial solution which coincides 
with accuracy to 61/4 with half a solitary wave [26]. It was also proved that  for ~ = 1 + 6 (for sufficiently 
small 5 > 0) there is a solution which, at infinity, behaves as a periodic wave [27]. 

Some features of nonlinear waves in a stratified medium do not have direct analogs in a homogeneous 
fluid. Among them is the existence of smooth bores, which are steaAy wave configurations in the form of a 
continuous transition which, for z ---} 4-oo, relates a pair of different horizontal flows. The existence of a family 
of exact solutions of the Euler equations that describe a bore in a two-layer fluid [28, 29] was proved. To this 
end, a special construction procedure for conservative problems of branching theory with nontrivial symmetry 
was developed [30]. 

Smooth bores in a two-layer fluid were realized in experiments in which undisturbed layers were at rest 
[31] and moved relative to one another [32]. 

Protopopov [33] developed a numerical algorithm for two-dimensional unsteady potential flow of an 
ideal fluid with a free surface and showed its effectiveness using as an example the problem of reflection 
of a solitary wave from a vertical wall [34]. The same author [35, 36] studied the problem of generation of 
soliton-type waves ahead of a moving source of fluid disturbance. 

(2) Significant advances have also been made in the construction and study of approximate models 
that describe fluid flows in "narrow" regions. 

Teshukov [37] developed a fundamentally new approach to the investigation of the mathematical model 
of vortex long waves which generalizes the classical model of shallow water theory. In the case of plane-parallel 
flow of an ideal incompressible fluid, the model equations of motion have the form 

I 

,x, t) + t) + g f t) d,X' = O, 
o (1)  

H,(=, t) + (u(=, = o. 

Here u is the horizontal velocity component, H is the Jacobian of the transformation from Eulerian coordinates 
to Lagrangian coordinates, A E [0, 1] is the Lagrangian variable along the vertical, x is the Eulerian coordinate 
along the horizontal, t is time, and 9 is the free-fall acceleration. The vertical velocity component v(z, ~, t) 
and the vorticity w(z, ~, t) are given by the relations 

v=Ft+uF~, Fa=H(x,)~,t), F(z,O,t)=O, w=H-lua. 
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In the case of eddy-free flow, ux = 0 and Ha = 0, and system (1) coincides with the classical model of shallow 
water theory. Similar systems of equations were constructed for the propagation of long waves in a barotropic 
fluid and in an inhomogeneous incompressible fluid. 

The notions of R.iemann characteristics and invariants were extended to systems of type (1) [37]. 
A new element of the theory compared with the classical case is the appearance of a continuous spectrum 
of characteristic velocities. The characteristics of system (1) are given by the equation x'(t) = k(a:, t). The 
discrete values of the characteristic velocities k(z, t) are given by the equation 

1 
f H(z, ~', t) dA' 
0 

and, for the continuous spectrum, k(,~) = u(z,)~,t), where ~ E [0, 1]. The characteristics of the discrete 
spectrum correspond to surface waves, and those of the continuous spectrum correspond to internal waves. 
Teshukov [38] proved the local correctness of the Canchy problem for system (1) with the initial data in 
the region of hyperbolicity of this system. Similar results were obtained for the model of vortex flow of a 
barotropic fluid [39]. The characteristic properties of long-wave equations for flows with a nonmonotonous 
velocity profile were analyzed by Teshukov and Sterkhova [40]. 

A model for the flow of an ideal incompressible fluid with a hydraulic jump,  which is identified with 
a strong discontinuity of solutions of system (1), is proposed and studied in [41]. In contrast to the classical 
model of shallow water theory, the strong-discontinuity relations allow one to determine not only the mean 
characteristics of the flow but also the velocity profiles behind the front of the jump. A model for a hydraulic 
jump in the flow of a barotropic fluid with a free boundary is proposed and analyzed in [42]. The  main 
difference from the previous model is that here hydraulic jumps that decrease the level cab occur. 

The theory of simple waves was extended to model (1) by Teshukov [43]. Teshukov [43] and Chesnokov 
[44] obtained a number of exact solutions of the equations of vortex shallow water. Elemesova [45] studied 
the equations of motion of a barotropic fluid. The existence of simple waves was proved, and new examples 
of exact solutions were obtained. The theory developed allows one to analyze the two-dimensional unsteady 
wave motion of a homogeneous vortex fluid with allowance for nonlinear processes. 

(3) Two-layer fluid flow is the simplest case of stratified flow. However, the use of this model in a 
long-wave approximation involves a number of fundamental difficulties. The equations of motion are of a 
mixed type, and, with a sufficiently large velocity shift in homogeneous layers, the Cauchy problem becomes 
incorrect. The laws of conservation of mass and momentum are insufficient to cStain relations for internal 
hydraulic jumps. 

Liapidevskii [46] realized a possible method of solution of the indicated problems. The spreading of 
the boundary between the layers due to mixing or generation of short waves is taken into account by using 
a three-layer flow scheme. In the interlayer between homogeneous layers, full laws of conservation of mass, 
momentum, and energy are used. This allows one to obtain a closed system that does not contain empirical 
constants and includes relations for internal hydraulic jumps. 

The resulting equations make it possible to explain a number of flow features of miscible fluids, such 
as the sudden decrease in the entrainment rate with transition from the supercritical to the subcritical flow 
regime, the possibility of controlling the location of an internal hydraulic jump and the degree of mixing 
by changing downstream conditions, and the generation of short-period waves at the crest of a tidal wave. 
Stationary solutions and traveling waves in the sublayer with the depth of the homogeneous layer much greater 
than the thickness of the interlayer are analyzed. This class of solutions turns out to be very wide. It includes 
solitary waves or "solitons" and solutions such as "jump-wave" and a "smooth bore" [46, 47]. 

Using the model developed, the problem of blocking for flow of a two-layer immiscible fluid over an 
obstacle was solved. It was shown that, even in the supercritical flow regime, a steady subcritical flow region 
with intense mixing between the layers is formed ahead of the obstacle. The model also describes the formation 
of a mixing layer and its transition into a buoyant jet [48, 49]. 

The structure of long waves that arise in the shear flow of a two-layer immiscible fluid over a two- 
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dimensional obstacle at the bottom has been studied theoretically [50, 51] and experimentally [52]. Anomalous 
two-layer flows of the water-kerosene system, in which an obstacle sustains the propagation of nonlinear 
disturbances and the flow above the obstacle is completely supercritical and a change in the obstacle height 
does not change the upstream flow, were discovered experimentally by R. Long (1954) and P. Byens (1984). 

Incident-flow parameters for which finite amplitude disturbances either cannot propagate upstream 
from the obstacle or their velocity is very small was indicated. This affows one to track the flow transition to 
a steady regime and compare the experimental and numerical results. 

(4) New results for the linear theory of generation of surface and internal waves were obtained in studies 
of the effect of an uneven bot tom on the characteristics of generated wave motion. 

The plane case of diffraction of surface waves over rectangular obstacles with schlieren zones has 
been investigated for a partially capped trench [53] and an underwater step [54]. The plane problem of the 
propagation of internal waves in an exponentially stratified fluid was solved by quadratures by Korobkin [55]. 

The evolution of the initial disturbance of the free surface of a homogeneous fluid in the plane case 
[56, 57] and three-dimensional case [58] has been studied by the method of radial approximation. In the 
three-dimensional prohlem, the solution in the vicinity of the caustic was constructed by means of the Maslov 
canonical operator [59]. 

Sturova [60] studied the effect of localized bot tom roughness of small height and resonance effects in 
the scattering of internal waves generated by a moving body from periodic bot tom roughness. 

Within the framework of the linear approximation of long waves on shallow water, it has been shown 
that periodic ridges, shore lines, chains of islands, etc. can have wave-guiding properties [61]. 

Nonlinear phenomena in the generation of internal waves in a two-layer fluid by a moving and 
simultaneously oscillating source of disturbances have been studied analytically [62]. It has been shown that 
allowance for nonlinear effects reduces the problem to the Shroedinger cubic equation. 

New results have been obtained in experimental studies of the generation of internal waves in a stratified 
fluid. Bukreev et al. [63] studied experimentally and theoretically the resonance regime occurring during 
simultaneous translational and vibrational motion of a cylinder in a two-layer fluid, which is accompanied 
by considerable wave amplification compared with the cases of purely translational or vibrational motion. It 
has been shown that,  in the vicinity of this regime, waves propagate not only behind the cylinder but also 
far ahead of it, the effect being described within the framework of linear theory. Bukreev and Gavrilov [64] 
discovered that the motion of a body at a certain critical velocity in a stratified fluid leads to the generation of 
soliton-like waves ahead of the body; the waves overtake the body and go to infinity. This case of generation 
of disturbances ahead of the body is not described by linear theory. Bukreev et al. [65] studied internal waves 
that arise in a pycnocline when a body moves over an obstacle. A wide range of spectral modes generated in 
this case was noted. 

The interaction of internal waves with a submerged body has been studied experimentally. A number 
of interesting effects that can be important for understanding and describing this phenomenon have been 
discovered. Ermanyuk [66] found doubling of the oscillation frequency for the forces acting on a body in 
comparison with the frequency of the incident wave. Gavrilov and Ermanyuk [67] showed that, under definite 
conditions, diffraction of internal waves by a body leads to excitation of higher modes, and this changes 
radically the wave-loading characteristics. Bukreev et al. [68] discovered the previously unknown mechanisms of 
memory for the motion prehistory, the possibility of body drift against waves, and the unexpected orientation 
of the body relative to the waves. For an elliptical cylinder with one degree of freedom (the possibility of 
rotation relative to the immovable horizontal axis), predominant orientation and, under certain conditions, 
rotation of the cylinder under the action of periodic internal waves were established [69]. Bukreev [70] found 
the instability of internal waves generated by a cylinder in a shear flow with a large Richardson number. This 
contradicts the linear theory of stability, according to which the flow under these conditions should be stable, 
and shows that this theory is insufficient and nonlinear analysis is required. 

The hydrodynamic load acting on a body moving in a stratified fluid was determined in [71-74], where 
the plane problem of generation and scattering of surface and internal waves by a horizontal cylindrical body 
moving above a pycnocline was studied. Solving the steady problem of homogeneous flow of an infinite two- 
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layer fluid around a circle, Khabakhpasheva [75] obtained an analytical solution in the form of a quickly 
converging series whose coefficients are determined from recursive relations. The solution, of the diffraction 
problem for a circular cylinder at rest in a two-layer fluid was constructed in a similar manner [76]. Numerical 
calculations of the total hydrodynamic load were presented for circular and elliptical cylinders. Comparison 
with experimental data was performed for the problem of scattering of the internal wave of the first mode by 
an immovable elliptical cylinder [77]. 

The hydrodynamics of an airfoil in flow of a multilayer fluid was studied by Gorelov and Gorlov [78-80]. 
The boundary-value problem of flow around an airfoil is reduced to a system of integral equations which are 
not generated in the extreme case of an infinitely thin airfoil. The solution of the problem of motion of a 
vortex source in a multilayer fluid having an arbitrary number of homogeneous layers [81, 82] made it possible 
to examine a wide class of boundary-value problems of motion of an airfoil near interfaces. The calculations 
performed for a Joukowski symmetric profile showed that the dependence of hydrodynamic characteristics on 
the angle of attack and on the distance of the profile from the interface is markedly affected by the thickness 
of the profile. 

The flow around a wing with allowance for the vortex wake behind it was studied for the first time for 
an exponentially stratified fluid by Tkacheva [83]. The wing was modeled by an infinitely thin plate which 
executed small vibrations by a given law, and the vortex wake was modeled by the line of contact discontinuity 
of velocity. It has been shown that the classical Joukowski formula for the lift force remains valid for a thin 
wing in a weakly stratified fluid. Calculations of hydrodynamic forces indicate that the dependence of the lift 
force of a wing on the Froude number is nonmonotonic. For larger Froude numbers, the lift force in a stratified 
fluid is smaller than in a homogeneous fluid, and at small Froude numbers, it is larger. The moment of forces 
in this case tends to zero with decrease in the Froude number. 1 

Model ing  of Phase  Transi t ions .  Phase transitions are complex processes which can be divided 
into several stages. The main stages are the separation of phases and coagulation. The first takes a short 
time, during which regions occupied by different phases are formed. In the second stage, the fine structures 
disappear, and the geometry of the regions occupied by different phases become simpler. In the limit, the 
phase interface tends to a surface with a minimum area. It follows from the aforesaid that two approaches to 
the modeling of these phenomena are possible. In the coagulation stage, it is natural to treat the problem as a 
free-boundary problem with the phase interface acting as a free boundary. In this case, under the assumption 
that the medium occupies region ft, the problem is formulated as follows. It is required to determine the 
surface F(t) which separates the subregions f~• occupied by different phases, and the temperature field O(z, t) 
so that the equations 

Ot - A O  = O ( ~ + ) ,  V O  . n + kO = O (Og~) 

are satisfied. 
At the desired interface, the temperature is considered continuous, as a rule, and the following 

additional conditions are specified: 

~V = ~ H - 0 n ,  V = [V0]- n. 

Here v is the relaxation parameter, ~ is a coefficient that characterizes the surface energy of interphase 
interaction, H is the curvature vector, n is the normal vector to the interface, and V is the velocity of motion 
of the interface in the normal direction. For z = r = 0, this problem becomes the classical Stefan problem. 
Meirmanov [84] (z = ~ = 0) and Starovoitov [85] showed that under smooth initial conditions and with 
the assumption that af~ does not have points of intersection with the free boundary at the initial time, this 
problem has a unique smooth solution for small time intervals. 

The second approach is based on the study of generalized solutions. In this case, the free surface 
appears naturally as a surface on which the internal energy of the medium undergoes discontinuity together 
with derivatives of the temperature and the chemical potential. The thermodynamic system is described by 
the density of the free energy F(O, ~), which is a function of temperature and the order parameter; the phase 
concentration can be used as the latter. In this case, the energy balance equation is the basic equation. It is 
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supplemented by additional equations that relate temperature and the order parameters. 
The most general are the equations of the gradient theory of phase transitions (the Kan-Hiilard and 

Kan-Allen equations and phase field equations), which are widely used as mathematical models that describe 
phase transitions at a certain microscopic level. They contain two small parameters, the relaxation time r 
and the interphase parameter ~ (the characteristic length of interphase interaction). The limiting process 
for r,~ ~ 0 leads to mathematical models that describe phase transitions at the macroscopic level. One 
challenge of the mathematical theory of phase transitions is to ground such limiting processes and to study 
the corresponding asymptotic. 

The following results have been obtained in this direction. Kaliev [86] studied boundary-value problems 
for the equations 

( 0 + t ~ ) , - L X ~ = 0 ,  ~ , = r - 1 ( h ( ~ ) - ~ ) ,  

where h(O) is the Heaviside function. He prove d the correctness of the basic boundary-value problems and 
showed that their solutions converge to the solutions of the Stefan problem. Plotnikov and Starovoitov [87] 
examined the following boundary-value problem for the quasi-stationary system of phase-field equations: 

f~: (O + l~ ) ,  - AO = O, - e A ~ o  + W'(~o) = eO, W ( s )  = (s 2 - 1) 2, 

Of/: ~o,, = 0, ~ = 0. 

At initial time, the distribution of the internal energy was assumed to be specified. This problem was 
shown to have a solution which, with the parameter e tending to zero, converges to the solution of the Stefan 
capillary problem with a zero relaxation parameter value. 

The resulting mathematical model essentially depends on the choice of regularization. The singular 
limits of solutions of viscous diffusion equations and the Kan-Hillard equations have been studied to elucidate 
this dependence. The viscous diffusion equation is of the form 

ut - eAW'( i = e A u .  

where the function W~(u) ,  the derivative of the thermodynamic potential, is an N-shaped curve. 
Plotnikov [88, 89] proved that as the small parameter tends to zero, the chemical potential W ' ( u )  

converges strongly to a function v, and the weak limits of functions of the form G(u)  admit the representation 
AiG(sl) + h2G(s2) + hsG(s3), in which the functions s i ( v )  satisfy the equation W ' ( s i ( v ) )  = v. Here hi are 
the phase concentrations (hi + h2 + h3 = 1, hi/> 0). 

The model in which the concentration of the unstable phase is equal to zero (h2 = 0) describes the 
phase transition processes with allowance for the hysteresis effect. For this model, a qualitative study of 
solutions has been performed. Plotnikov [90] established that the model satisfies the irreversibility principle: 
if the phases are separated at the initial instant, they remain separated at the subsequent instants of time. 
If surface forces are the leading factor, the phase separation in the isothermal approximation is de:scribed by 
the Kan-Hillard equations 

t) = + w ' ( u ( x , t ) )  = Q.  

In this case, the solutions oscillate with period e, and the problem consists in determining the corresponding 
probability distribution function. Plotnikov [91] established that in this case the slow variables - -  the chemical 
potential v and the adiabatic invariant I = - (e /2) luxl  2 + W ( u )  - vu  - -  strongly converge, and the function 
of distribution of the limiting concentration values u is expressed explicitly in terms of the limiting values of 
the slow variables. 

Within the framework of the classical theory of phase transitions, the medium is considered immovable, 
as a rule. It is of interest to extend the approach based on the gradient theory of phase transitions to problems 
of motion of continuous media. In this direction, for the problem of motion of a two-component viscous fluid, 
Starovoitov [92] developed a model of a phase field which takes into account both the capillary interaction of 
fluids and their mutual diffusion. The correctness of the basic boundary-value problems for this model was 
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established, and asymptotic analysis showed that as the small parameter tends to zero, the solutions converge 
to the solution of the free boundary problem for the Navier-Stokes equations. 

T h e r m o c a p i l l a r y  F lows  and  T h e i r  Stabi l i ty .  When a nonuniformly heated fluid has a free 
boundary and is in a state close to zero gravity, its motion is strongly affected by the temperature dependence of 
the coefficient of surface tension and by the associated thermocapillary effect. The intensity of thermocapillary 
motion is characterized by the Marangoni number M = mAl/pux ,  where ~e is the constant tempcraturc 
coefficient, A is the characteristic temperature gradient along the free surface, l is the characteristic dimension 
of the flow region, and p, v, X are the density, kinematic viscosity, and thermal diffusivity of the fluid, 
respectively. In studies of thermocapillary phenomena, the role of this number is as important as the role of 
the Reynolds number in classical hydrodynamics. In real situations, the parameter M varies widely: from a 
quantity of the order of unity in the processes of thermocapillary drift of microbubbles to 104 in experiments 
on directed crystallization of semiconducting materials under zero gravity conditions. The Prandtl  number 
Pr = u/X and the Weber number We = aol/pu X are also important. Here a0 is the coefficient of surface 
tension. 

Andreev and Admaev [93, 94] studied the effect of these parameters on the development of axisymmetric 
flow in the problem of production of single crystals by zone melting. In this case, the temperature dependence 
of surface tension can be linear [a = a0 - m'(0 - 00)] or nonlinear [a = cr0 + ml(0 - 00) 2 is the anomalous 
thermocapillary effect]. In the first case, the velocity and temperature fields and the free boundary of the melt 
oscillate, and, in the second case, they either increase monotonically or decay monotonically with time. The 
corresponding steady flows have a more complex structure. Thus, for example, for Pr = 4.1 and M = 10 2, 

two different regimes are possible in the first case, and for Pr = 10 and M = 0.3 the problem can have five 
different solutions for the anomalous thermocapillary effect. J 

The stability of equilibrium positions and of steady flows occurring under the action of thermocapillary 
forces have been studied [95-99]. It has been shown analytically and numerically that ,  in the case of monotonic 
disturbances, allowing for the deformation of the free surface (We ~ 0) leads not only to a considerable decrease 
in stability in the region of small wave numbers, but also to the appearance of a discontinuity point in the 
neutral curve [95, 96 I. This phenomenon was explained by solution of the full problem. The neutral curve was 
shown to consist of two branches, each of which corresponds to its own type of disturbances. At small wave 
numbers, the capillary mode, which is responsible for the disturbance of the free boundary, dominates, and at 
large wave numbers, the thermal mode, which is related to the nonuniform heating of the liquid, dominates. 

Oscillatory thermocapillary instability in a flat layer heated from below was first discovered in the 
classical Pearson problem [97]. It results from both the deformability of the free surface (in the region of 
short waves) and the interaction of capillary and thermocapillary forces at large Marangoni numbers, when 
oscillating disturbances of a new type arise. 

It has been shown that  the instability of the thermocapillary flow (in a cylindrical layer) occurring 
upon heating of a melting zone by external sources of heat can be caused by deformation of the surface (the 
capillary mode is responsible for this), by motion of the melt (the hydrodynamic mode), and by nonuniform 
heating of the fluid (the thermal mode) [98, 99]. 

The possibility of suppressing the P~yleigh-Taylor gravitational instability by the action of thermal 
interphase effects was shown by Badratinova et al. [100-102], who studied the stability of the equilibrium of a 
vapor or gas layer separating a viscous incompressible fluid from a heated solid boundary. Here the fundamental 
differences from the previous studies were the allowance for the viscosity of the lower lighter phase and the 
assumption that the thickness of this phase is finite. At the liquid-gas interface, the thermocapillary effect was 
taken into account, and the phase transition at the "liquid-vapor" interface was considered. At sufficiently 
small thickness of the vapor layer, the phase transition at the interface is the determining factor that  affects the 
stability of equilibrium in the "liquid over vapor" system, and the thermocapillary mechanism is the dominant 
mechenism for the instability of the one-dimensional heat transfer from the phase to the equilibrium "liquid 
over vapor" system. 

The conditions of suppression of the Rayleigh-Taylor instability were formulated as new similarity 
criteria. The results for the critical heat flow agree with the previous statement of Kutateladze that  the onset 
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of burnout is caused by the loss of stability of two-phase wall flow [102]. 
A phenomenological model describing the motion of an emulsion or a gas-liquid mixture under the 

action of thermocapillary forces and microaccelerations was formulated by Pukhnachov and Voinov [103]. 
The concentration of the dispersed phase is assumed small, and this allows one to obtain a closed system 
of equations, without empirical parameters, for the concentration, the velocity vectors of the carrier and 
dispersed phases, tile pressure of the carrier phase, and the total temperature of the mixture. 

One-dimensional motion regimes for such a system have been studied analytically and numerically, 
and the structure of discontinuous solutions has been analyzed. Necessary conditions of stability for a flat 
"emulsion-pure liquid" interface were obtained. The stability of the spatially uniform state of mixtures 
which describes motions at constant concentrations and constant velocities of the phases was investigated by 
Pukhnachov and Voinov [t04]. It has been shown that one-dimensional disturbances are the most dangerous. 
A stability condition was obtained, from which it follows, in particular, that,  in complete zero gravity, the 
uniform motion of lead droplets in melted aluminum is stable, and the spatially uniform state of gas-liquid 
mixtures at a constant temperature gradient is unstable and has a tendency to the formation of layers with 
a high gas content, as shown by numerical analysis. 

Ryabitskii [105, 106] studied the effect of surfactants on the occurrence of thermocapillary convection. 
He showed that  the presence of an insoluble surfactant does not stabilize equilibrium, as expected previously, 
but, on the contrary, leads to the occurrence of flow even at very small temperature gradients. 

Antanovskii [107] explained and modeled the anomalously slow thinning of a vertical liquid film in 
the gravity field in the presence of a surfactant. It has been shown that because of the entrainment of the 
surfactant in the gravity field, a surface-tension gradient arises, which causes upward-directed Marangoni flow. 
This process stabilizes the film and increases the t ime of its existence by three orders of magnitude compared 
with the case of a pure liquid. 

M i c r o c o n v e c t i o n  in Liquids .  Analysis of the assumptions made in the derivation of the Oberbeck- 
Boussinesq equations from the exact equations of motion of a viscous heat-conducting liquid indicates that 
the classical model is inapplicable in the case of fulfillment of the inequality gl3x/v < 1, where g is the 
acceleration of gravity, l is the characteristic linear dimension, u is the kinematics viscosity coefficient, and 
X is the thermal diffusivity of the fluid [108]. In addition, this model, in which the velocity field is considered 
solenoidal, is not able to describe correctly convective flows in distinctly unsteady conditions. 

In the new model of convection of an isothermally incompressible fluid proposed by Pukhnachov [108], 
the velocity field is no longer solenoidal. In this case, the continuity and momentum equations are exactly 
satisfied, and the energy equation is asymptotically satisfied. 

Pukhnachov [109] proved the unique solvability of the three-dimensional unsteady problem of 
microconvection in a bounded region with a heat flux specified at the boundary of the region. It has been 
established that  the classical solution of this problem is analytic for the Boussinesq parameter/3 T for small 
values of the latter (/3 is the volume expansion coefficient and T is the characteristic temperature gradient). 
The solvability of the steady problem was proved with specification of both the heat flux and temperature 
at the boundary of the region if the parameter e = /3  T is small. It has been shown that, in the steady case, 
the difference between the dimensionless velocity vectors determined using the classical model and the new 
model is of the order of e [110]. 

Group analysis of microconvection equations in a two-dimensional unsteady case has been performed 
[18]. A number of invariant solutions of the indicated system have been studied, in particular, the solution 
describing convective flows in a vertical layer under the action of a periodic time-dependent heat flux at 
its boundaries [111]. The liquid-particle trajectories calculated using the two models was found to exhibit 
significantly different qualitative behavior at large times. This was supported by numerical studies of 
microconvection regimes in circular regions for liquids such as glycerin and melts of silicon and glass [112, 113]. 
It has been shown, in particular, that, for unsteady flows without free boundaries, the velocities calculated 
by the new model can be three times higher than those predicted by the traditional model. 

M o t i o n  of  B o d i e s  in a V i b r a t i n g  Liquid.  The behavior of bodies in a vibrating liquid has been 
studied since the last century. It has been established experimentally that vibrations of liquids can affect 
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greatly the motion of inclusions, cause unusual (paradoxical) phenomena, and serve as a means for controlling 
the inclusions. Until recently, these phenomena were explained at a qualitative, estimation, or macroscopic 
level, at which the mixture of a liquid and inclusions was treated as a continuous media. 

A new approach to this problem was proposed in [114-118]. This approach is based on accurate 
formulations of problems and experiments for an individual inclusion, and it can be considered a microscopic 
approach in contrast to the macroscopic one. Sennitskii [114] found that a cylinder near the wall of a vessel 
with a vibrating fluid experiences a force attracting it to the wall. This circumstance provides an explanation 
for the experimentally observed behavior of bodies in a vibrating fluid in the presence of the force of gravity, 
i.e., the floating of bodies with a density exceeding the fluid density, and vice versa. Lugovtsov and Sennitskii 
[115] showed that the occurrence of this attraction force is related to the dependence of the attached mass 
of the body on its location in the vessel. The equations describing the motion of a sphere in a closed vessel 
which executes specified translational vibrations have the form 

(mSij + #ij)~j ~- ( p V  - m)toi, 

I O~yk; ; 
+   j)2j 210 jk2j2 = - pv)9  + i = 1, 2, 3, 

where m is the mass of the sphere, V is its volume,/~/j =/~/j(Xk) is the tensor of the attached mass, which 
depends on the location of the sphere in the vessel and on the vessel shape, ~r is the quickly time-varying, 
small deflection from the average trajectory of the sphere, and wi  is the acceleration of the vessel; the bar 
denotes averaging over time. The last term on the right side of the second equation results from averaging 
over high-frequency vibrations of exact equations and describes the indicated force. 

The above circumstance, however, is not the only one that  can lead to the effects observed in 
vibrating liquids. It is important  that  inclusions upon vibratory actions perform motion in different directions 
under nonuniform conditions. Sennitskii [116] showed that  the motion of inclusions can be controlled if 
these inclusions are compressible bodies (a gas bubble or a compressible solid body). The predominantly 
unidirectional motion of inclusions is achieved by choosing an appropriate phase difference between the 
vibrations of the closed vessel and the periodic pressure changes in it. This theoretical result was confirmed 
experimentally [117, 118]. 

To go over from the microscopic to the macroscopic description, it is necessary, at least, to study the 
interaction of inclusions. As a first step in this direction, Sennitskii [119] studied the motion of a sphere caused 
by vibrations of another sphere. He found that  the mean motion of the inclusion (the free sphere) is directed 
toward the periodically vibrating sphere if the density of the inclusion is higher than the fluid density, and if 
the ratio of densities is inverse, the direction of motion of the inclusion is reversed. This effect can be treated 
as the "generation" of a "gravity field" by the vibrating sphere. In this field, the free sphere "floats up" or 
"sinks," depending on the ratio between inclusion and fluid densities. 

An important point in studies of the motion of inclusions in a vibrating liquid was the division of 
liquid vibrations into uniform and nonuniform [120]. If, in the absence of inclusions in a vibrating liquid, all 
liquid particles move at the same velocity, the vibrations are uniform. If this is not the case, the vibrations are 
nonuniform. Depending on the type of vibrations, qualitatively different mean motion of inclusions occurs. 
In particular, in the case of uniform vibrations, a solid inclusion whose density is equal to the liquid density 
moves together with the liquid. 

Lavrent'eva [121] showed that, in the case of nonuniform vibrations generated by a point pulsating 
source, there is mean motion of a free sphere having the same density as the liquid. Interesting details of this 
motion with an arbitrary ratio of densities have been established. It has been found that the sphere approaches 
the source if its density is not lower than the liquid density or if its center is not too distant from the source 
at initial time. The sphere moves away from the source if its density is lower than the liquid density or if it 
is far from the source at initial time. 

F i l t r a t i o n  Flows.  New mathematical models of filtration theory have been developed. Kashevarov 
[122] proposed a model and iteration algorithm for the transfer of pollutants by interacting flows of surface, 
soil, and ground water for large-scaled objects. For individual components of the complex system of nonlinear 
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equations of interrelation, the uniqueness and existence (locally in time) of solutions of the corresponding 
initial boundary-value problems was proved. In particular, Antontsev and Kashevarov [123] examined the 
localization of solutions of nonlinear parabolic equations degenerating on the surface. A number of exact 
solutions of multiparameter problems for the important class of plane filtration flows with a free surface in 
the presence of singular points was obtained and studied by Emikh [124]. 

For the solution of problems of geotechnology and ecology, Pen'kovskii and Rybakova proposed models 
of interrelation of hydraulic and filtration processes occurring in drilling (the bore-bed system, predictions of 
crust formation, and location of zones of possible stalling of boring tools) [125], and also models of underground 
leaching [126] with allowance for unsteady filtration, convective diffusion, and mass exchange between the 
moving solution and the frame of the medium. Using statistical methods, Kapranov [127] developed a new 
approach to the study of the mechanical injection of low-concentration mixtures, such as clay solutions, into 
a porous medium. 

Domanskii [128] and Antontsev et al. [129, 130] studied the properties of the nonlinear system of 
degenerating equations of two-phase filtration. These studies revealed some phenomena of theoretical and 
applied importance in the processes of immiscible displacement. In particular, the phenomenon of capillary 
entrapment of inclusions of the displaced phase both at the boundary and inside the filtration region of the 
liquid displacer have been established theoretically and experimentally, and criteria of destruction of such 
inclusions have been formulated. This provides a new insight into the nature of formation of retained oil in 
beds being exploited and into the development of methods of activating inflow to boreholes. Pen'kovskii [131] 
established recently that similar phenomena occur in the case of three-phase filtration. 

Monakhov and Khusnutdinova [132] studied the conjugation of high-velocity flows of a viscous fluid in 
boreholes and open beds (channels) with filtration flows of the fluid in the ambient porous medium [132]. A 
number of variants of conjugation were examined within the framework of a boundary-layer approximation 
for both flows. For mutually perpendicular boundary layers in a borehole and the porous bed adjacent to the 
borehole, the solvability of the corresponding boundary-value problems was proved and the class of self-similar 
flow regimes was obtained. 

H y d r o d y n a m i c  Stabi l i ty .  Over the last decade, the region of application of the direct Lyapunov 
method has been considerably extended in studies of the stability of equilibrium (quiescent) states and steady 
flows of liquids and gases. New results have been obtained in this line of investigation. These are the exponential 
estimates of increase of disturbances in problems of linear instability of the quiescent states and steady flows 
and a priori  estimates indicating a quadratic mean increase of disturbances in problems of linear instability 
of a number quiescent states. It is of interest to obtain sufficient conditions of nonlinear instability that, on 
the one hand, would generalize the known conditions in the sense of new definitions of stability and, on the 
other hand, provide information on the stability of equilibrium states and steady symmetric flows that cannot 
be described by the known conditions. 

Vladimirov et al. [133-137], II'in [138], and Gubarev [139, 140] give numerous examples of construction 
of the Lyapunov functional and inversion of the Lagrange theorem to establish the instability of quiescent 
states for various hydromechanical schemes against small spatial disturbances and to obtain exponential 
estimates. 

For a stationary, axisymmetric, compressible, baroclinic vortex in the potential field of external 
mass forces [141] and for magnetohydrodynamic (MHD) flows of an ideal incompressible fluid with infinite 
conductivity [142], instability against small disturbances of the corresponding symmetry has been established 
and exponential estimates of increase of the disturbances have been obtained. 

Sufficient conditions of nonlinear stability against spatial disturbances have been obtained for the 
quiescent states of an incompressible liquid with nonuniform density (continuously stratified) in the potential 
field of external mass forces and for a number of steady flows of compressible and incompressible fluids, 
including an ideally conducting fluid with a certain type of symmetry in a magnetic field with disturbances 
of the same symmetry [143-147]. 

Belov and Vladimirov [148] proved the instability against finite plane disturbances for the quiescent 
states of two immiscible, ideal, incompressible, capillary fluids with different densities filling a fixed cylindrical 
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vessel in the potential field of external mass forces, and Gubarev [140] established the instability of the 
quiescent states of an infinite, self-gravitating, compressible medium against finite spatial disturbances [140]. 
For both problems, estimates were obtained that indicate a quadratic mean increase of the corresponding 
disturbances. 

A peculiar problem of fluid flow stability is the problem of spontaneous swirling: can rotary motion 
occur in axisymmetric flow as a result of the loss of stability in the absence of external sources of rotation, 
i.e., under conditions where motion without rotation is a pr ior i  possible? 

Gol'dshtik et al. [149-151] state that spontaneous swirling is possible. This phenomenon was called 
"self-rotation" or a "vortex dynamo." However, in the examples constructed there is a nonzero axial component 
of the angular momentum which inflows in the flow region. Lugovtsov and Gubarev [152, 153] propose a more 
rigorous formulation which ensures a strict control of the kinematic flow of the angular momentum and 
eliminates the inflow of the rotating fluid in the flow region considered. In this formulation, the question of 
the possibility of bifurcations of the initial axisymmetric flow as a result of the loss of stability against swirling 
flow (not necessarily rotationally symmetric flow) remains open. 

To prove the existence of this phenomenon, it is necessary to find even one example. In an attempt to 
narrow the region of search for such an example, Lugovtsov and Gubarev [152-154] considered the transition 
of axisymmetric flow to rotationally symmetric flow and the plane analog of such transition - -  the occurrence 
of spontaneous transverse flow (perpendicular to the initial flow), which is independent of the transverse 
coordinate in the case of initial plane-parallel flow. 

It has been shown [153] that the bifurcations axisymmetric flow-rotationally symmetric flow and the 
corresponding plane analog of this transition do not occur for an arbitrary compressible fluid with a variable 
viscosity coefficient. This result is analogous to the well-known (in "magnetic dynamo'~ theory) Cowling 
theorem on the impossibility of an axisymmetric "magnetic dynamo" and the corresponding plane analog of 
this phenomenon. In the case of the plane analog, this statement was shown to be also valid for a conducting 
fluid moving in a magnetic field, irrespective of the character of connectedness of the flow region. 

The situation is different for axisymmetric flows in a magnetic field. In this case, as is shown by 
Lugovtsov and Gubarev [153], under definite conditions, steady swirling flows sustained by electromagnetic 
forces are possible, and the formulation of the problem of spontaneous swirling requires refinement. This 
refinement was made in [154], where it was shown that axisymmetric spontaneous swirling is impossible for 
a fluid with finite conductivity if the meridian section of the flow region is simply connected. In this region, 
the poloidai components of the magnetic field always vanish with time, and swirling becomes impossible. For 
a multiply connected region, this question remains open. 

For an ideally conducting fluid, the character of connectedness of the flow region becomes insignificant, 
because, in this case, the poloidal components of the magnetic field do not vanish by virtue of freezing. 
Lugovtsov [155] showed that, in such MHD flows in the presence of external fields having only poloidal 
components, axisymmetric spontaneous swirling is possible, at least for an inviscid fluid. 

As is shown in [153], rotationaily symmetric flow (in the general case, on the average; averaging over 
the azimuthal angle) can arise only as a result of countergradient flux of the angular momentum. Although 
the flow considered in [149] cannot be treated as an example of spontaneous swirling, it demonstrates the 
possibility of occurrence of countergradient flux of angular momentum in nonaxisymmetric swirling flows. In 
MHD flows, the magnetic field leads to additional possibilities for the occurrence of such a mechanism, and, 
as is shown in [155], it is realized in axisymmetric swirling. Within the framework of the formulation proposed 
in [152, 153], the question of the existence of such a mechanism in nonaxisymmetric flows without magnetic 
field remains open. 

Vor tex  Mot ions  of a Fluid .  A number of results obtained in studies of unsteady vortex flows based 
on group analysis are given in [18]. 

Vortex structures are of certain independent interest. In addition, they have attracted attention in 
connection with studies of large-scale formations in turbulent flows. Interesting results have been obtained in 
studies of steady vortex structures in an inviscid incompressible fluid in the presence of additional symmetries 
[18, 156, 1571. 
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In the case of steady plane flows of an ideal incompressible fluid, Kaptsov [156] obtained exact solutions 
of the equation for the stream func t ion /k r  = w(r The form of all right sides w(r for which this equation 
admits generalized separation of variables is found. The solutions describe flows of the type of a source in an 
eddy fluid, periodic flows between two walls, motions in a rectangular cylinder, and some others. 

For axisymmetric swirling flows, the equation of the stream function (in plasma physics, it is known 
as tile Grad-Shafranov equation) with a special form of the nonlinear right side also admits separation 
of variables. This made it possible to obtain exact solutions corresponding to various vortex structures: an 
exponentially decaying vortex shielded by two walls, analogs of Taylor toroidal vortices, periodic "loop tracks," 
structures of the type of a "cat's eye," and some other magnetic vortex structures in a plasma [157]. 

In the Kirchhoff elliptic vortex, the fluid velocity is continuous and the fluid is at rest at infinity. 
Garipov [158] studied the spatial analog of this flow. The flow of an inviscid incompressible fluid with piecewise- 
constant vorticity and piecewise-constant density which undergo discontinuity on the surface of an ellipsoid was 
examined. In this case, a tangential discontinuity on the boundary between the ellipsoid and a linear increase 
in the fluid velocity at infinity are assumed. In this generalized formulation, nontrivial spatial solutions exist. 
All flows of such a structure have been found. It has been shown that  this class of flows contains, in particular, 
all known generalizations of the Kirchhoff vortex (they are all plane). 

Plane flows of an inviscid fluid in regions bounded by solid walls are calculated in [159-162]. 
A new numerical technique based on absolutely stable difference schemes was used. Effective algorithms 
using splitting by physical processes and Fourier discrete transform, which ensure exact satisfaction of the 
attachment conditions on the walls and, in the case of doubly connected regions, satisfaction of the pressure 
uniqueness condition, were developed to solve two-dimensional systems of the Stokes and Navier-Stokes 
difference equations written in the variables "stream function-vorticity." 

Kuznetsov [163] examined the possibility of continuation of the Prandtl boundary layer when the 
pressure increases downstream. It has been established that  for any pressure distribution, it is possible to 
indicate the initial velocity profile for which the continuation is possible if a certain inequality is satisfied 
which relates the quantities calculated from the data of the problem. 

L inea r  ( T o r n a d o - L i k e )  Vort ices .  The study of flows with linear vortices is important for 
understanding the dynamics of vortex formations in nature (cyclones, hurricanes, waterspouts, and tornadoes) 
and in various technical devices (centrifugal atomizers, vortex chambers, etc.). This field of investigation has 
been developed in both theoretical and experimental lines. 

Akhmetov and Tarasov [164] report the results of an experimental study of the internal structure and 
evolution of the core of a tornado-like vortex occurring in the flow beLween two coaxial disks of the same 
radius, rotating at constant angular velocity in the same direction. Measurements have shown that flow of the 
type of a tornado-like vortex with a rigid-body rotating core is established (the average velocity field). It has 
been found that, with excess of a certain critical Reynolds number, the cross section of the core loses circular 
symmetry and acquires the shape of an oval, triangle, quadrangle, etc. Surprisingly, the number of vertices of 
the polygon decreases with increase in the Reynolds number, and this contradicts intuitive expectations. There 
is no grounding in theory to this phenomenon. With sufficiently large Reynolds numbers, the core consists 
of a system of smaller secondary vortices. It continuously deforms and regularly exchanges fluid with the 
surrounding flow by ejecting spiral sleeves, which propagate in the external flow, and entraining the external 
fluid as individual jets. 

Makarenko and Tarasov [165] found experimentally that, in a rigid-body rotating fluid, a system of 
tornado-like vortices parallel to the rotation axis occurs under various disturbances. Based on this fact, 
they proposed a new mechanism for the occurrence of tornadoes involving the initiation of intense inertial 
waves in a rotating fluid [166]. It has been established that,  when a cylindrical vessel with a fluid rotates 
at constant angular velocity and its flexible upper surface oscillates in a specified manner, a tornado-like 
vortex occurs in the fluid. The vorticity level of this vortex is extremely high and far exceeds the doubled 
angular velocity of the vessel [167]. The properties of this vortex were shown to be similar to the well-known 
properties of atmospheric vortices - -  tornadoes. This similarity provides an explanation for many facts due 
to the propagation of tornadoes. 

505 



Makarenko [168, 169], using a laboratory setup, showed that vortices of this type can occur under 
certain conditions in the interaction of a mesocyclone with roughness of the earth's surface. The conditions 
of occurrence are formulated in the form of criteria that allow prediction of tornadoes in nature. 

The problem of the effect of rotational tangential stresses of a definite type (decaying in inverse 
proportion to the square of the distance from the center of rotation) on the plane free surface of a viscous 
fluid was solved in an exact formulation by Nikulin [170]. He showed that a linear vortex and an upward flow 
along it occur in the fluid, the flow being self-similar. The existence theorem was proved, and the qualitative 
behavior of the solution was studied. The results were used to calculate the upwelling (outside the zone of 
maximum winds) that occurs when a hurricane moves over the ocean. 

Nikulin [171-175] used the long-wave approximation equations derived in [172], which are similar to 
eddy shMlow water equations, to describe flows in rotationally symmetric hollow and tornado-like vortices. 
The steady fluid flow in the core of a vertical tornado-like vortex has been studied ignoring fluid rotation in 
the core [173] and taking it into account [174]. A strict criterion was obtained which expresses conditions of 
continuation of solutions to a finite or an infinite height. The noncontinuability of solutions is associated with 
vortex decay. The location of vortex decay was determined and an analytical model of this phenomenon was 
constructed [171]. The flow evolution in the vortex core has been studied [174]. The steady fluid flow in a 
hollow vortex in a tube of variable radius has been examined [175]. It has been shown that  two different flow 
regimes are possible. A strict criterion distinguishing these two regimes is obtained. The flow was shown to 
be similar to ideal gas flows in tubes of variable cross section. 

At present, the main flow parameters in a centrifugal atomizer are calculated using the principle 
of maximum discharge (PMD) proposed by G. N. Abramovich and, independently, by J. Taylor, which 
supplements the conservation laws which are insufficient in the general case. It follows from this principle 
that the flow in the atomizer nozzle must be strictly critical. Lugovtsov [176] showed that,  for a centrifugal 
atomizer of special shape (an atomizer with a Borda nozzle), the main flow parameters are determined exactly 
using the conservation laws within the framework of the model of an ideal incompressible fluid. The exact 
results differ greatly from those obtained on the bases of PMD. Thus, for example, the nozzle flow velocity 
turns out to be supercritical (exceeds the critical velocity by a factor of two or more). A similar situation also 
arises for flows through spillways [177]. These results pose doubt on the reliability of calculations using PMD. 

T u r b u l e n c e .  Bukreev [178] studied the transition from the laminar to the  turbulent regime for the 
flow caused by longitudinal vibrations of a cylinder in an infinite fluid. The boundary between the laminar 
and turbulent regimes was determined. 

Turbulent, axisymmetric, momentum-free, jet flow [179] and the vortex wake behind a sphere with 
compensation of the drag force [180] have been studied experimentally. A number of statistical characteristics 
of turbulent velocity pulsations were obtained. 

The disappearance of the "memory" of the initially asymmetric location of a heat source in a symmetric 
turbulent mean flow has been studied experimentally and using numerical calculations [181]. It has been shown 
that the distributions of statistical characteristics of the temperature field tend, although slowly, to the same 
symmetry as the distribution of characteristics of the velocity field. 

H y d r o a e r o e l a s t i c i t y .  Ryabchenko [182] calculated unsteady aerodynamic characteristics for an 
annular blade cascade of arbitrary shape vibrating in a flow of an incompressible fluid [182] and for a blade 
cascade in a subsonic gas flow [183]. The limits of applicability for the assumption of plane and cylindrical 
sections were determined numerically. 

Kurzin [184] considered the evolution of vortex wakes in the interaction of two cascades. Yudin [185] 
analyzed the effect of the evolution of vortex wakes on the unsteady aerodynamic characteristics of blades. 
An experimental and theoretical study of acoustic resonance in the aerodynamic interaction of cascades is 
reported in [186]. It is shown that  for resonance to occur, not only must the natural frequencies and the 
frequencies of exciting forces coincide, but it is also necessary that a certain ratio of the number of blades in 
the moving cascades be satisfied. 

Using the model problem of the stability of the location of a free vortex at the center of an annular 
cascade, Kurzin and Ovsyannikova [187] showed that, because of instability, self-excited circular inhomogeneity 
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of the flow can occur in centrifugal turbomachines. 
Kurzin et al. [188] developed a method for calculating aeroelastic vibrations of blade cascades, which 

brings the calculation model as near as possible to the object of investigation. 
A model of an active Helmholtz-type resonator for suppressing acoustic vibrations in combustion 

chambers was proposed [189]. Analytical relations for determining optimal resonator parameters were 
obtaincd. This model was used to explain the sudden increase in the level of vibrations of the active part of 
an inductive source of energy [190]. 

Unsteady processes in combustion chambers have been studied in theoretical, experimental and full- 
scale studies. It has been shown that  the hydrodynamic instability of laxge-scale vortex structures is responsible 
for excitation of low-frequency acoustic vibrations in combustion chambers [191,192]. 

W a t e r  I m p a c t .  The problem of collision of liquid and solid masses belongs to the wide class of 
problems of unsteady fluid flow in a time-varying region whose boundary consists of a free surface, a moving 
solid surface, and the line of contact between them. 

In the problem of impact of a solid body on a liquid, the initial stage of collision, in which the main 
quantities undergo significant changes, is of special interest. Just after the beginning of motion, the topology 
of the flow region changes: the previously absent component of the liquid boundary adjacent to the solid 
surface appears. Even after all possible simplifications, the problem remains linear, because the size of the 
region of contact is not known in advance. It is determined from the condition of restricted motion of liquid 
particles [193]. Within the framework of an incompressible ideal liquid model in the plane case, this condition 
leads to the system of two transcendent equations for the coordinate of the point of contact. In this case, the 
motion potential is used instead of the velocity potential, which is traditionally used in penetration problems. 
It was found that  the form of the equation depends not only on the body geometry. This made it possible to 
study in detail the effect of the shape of a submerging body on hydrodynamic loads and indicate the body 
shapes for which these loads axe extreme [194]. 

In the initial stage of submersion in a liquid, the velocity of broadening of the wetted area of a 
blunt body can exceed the local speed of sound in the liquid even when the collision velocities are not high. 
Therefore, ignoring the compressibility of the liquid can lead in some cases to physically unrealistic results. 
Korobkin [195-198] constructed an asymptotic theory of collision of a rigid body with a slightly compressible 
liquid. The low Mach number, which is equal to the ratio of the collision velocity to the sound velocity in 
the quiescent liquid, acts as a small parameter. The theory is essentially based on the ideas developed within 
the framework of an ideal incompressible liquid model. However, in this case, the size of the region of contact 
depends not only on the body shape but also on the history of body motion and fluid flow. Because of the 
presence of the line of contact which is not known in advance, the problem remains essentially nonlinear even 
after linearization of the boundary conditions and motion equations. But even this "partial" linearization is 
not always possible. The proposed theory allows one to describe the pressure distributions over the wetted 
area of the body [195, 196], the dynamics of the shock waves generated upon impact [197, 198], the formation 
of spraying jets [199], and cavitation phenomena [200] observed in the region of contact. Extension of the 
theory to the case of a deformable body is given in [201]. The majority of the results are obtained in an 
analytical form, and this makes it possible to analyze the above-mentioned phenomena and estimate the main 
characteristics. Previously, these problems have been studied only numerically. 

In conclusion, the authors are grateful to V. K. Andreev, I. G. Badratinova, V. I. Bukreev, Yu. G. 
Gubarev, A. A. Korobkin, V. B. Kurzin, V. Yu. Liapidevskii, N. I. Makarenko, V. I. Nalimov, P. I. Plotnikov, 
V. V. Pukhnachov, I. V. Sturova, V. M. Teshukov, and other colleagues for providing materials for this review. 
The assistance of E. Z. Borovskaya and F. V. Lugovtsova in the preparation of the manuscript is acknowledged. 
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